乐天堂·fun88(中国)APP下载

您当前位置:

乐天堂·fun88(中国)APP下载 > 设计团队

打入AI底层NUS尤洋团队用扩散模型fun88乐天堂(APP)官方网站构建神经网络参数LeCun点赞

发布时间:2024-02-27 浏览次数:

  这就是新加坡国立大学尤洋教授团队联合UCB、Meta AI实验室等机构最新开源的研究成果。

  具体来说,研究团队提出了一种用于生成神经网络参数的扩散模型p(arameter)-diff。

  这一模型一经发布,就迅速在AI社区引发强烈讨论,圈内人士对此的惊叹,毫不亚于普通人看到Sora时的反应。

  就连AI巨头LeCun看了之后,也点赞了这一成果,表示这真的是个cute idea。

  而实质上,p-diff也确实具有和Sora一样重大的意义,对此同实验室的Fuzhao Xue(薛复昭)博士进行了详细解释:

  Sora生成高维数据,即视频,这使得Sora成为世界模拟器(从一个维度接近AGI)。

  而这项工作,神经网络扩散,可以生成模型中的参数,具有成为元世界级学习器/优化器的潜力,从另一个新的重要维度向AGI迈进。

  扩散生成过程,是从随机分布到高度特定分布的转变,通过复合噪声添加,将视觉信息降级为简单噪声分布。

  而神经网络训练,同样遵循这样的转变过程,也同样可以通过添加噪声的方式来降级,研究人员正是在这一特点的启发之下提出p-diff方法的。

  从结构上看,p-diff是研究团队在标准潜扩散模型的基础之上fun88乐天堂(APP)官方网站,结合自编码器设计的。

  研究者首先从训练完成、表现较好的网络参数中选取一部分,并展开为一维向量形式。

  然后用自编码器从一维向量中提取潜在表示fun88乐天堂(APP)官方网站,作为扩散模型的训练数据,这样做可以捕捉到原有参数的关键特征。

  训练过程中,研究人员让p-diff通过正向和反向过程来学习参数的分布,完成后,扩散模型像生成视觉信息的过程一样,从随机噪声中合成这些潜在表示。

  最后,新生成的潜在表示再被与编码器对应的解码器还原成网络参数fun88乐天堂(APP)官方网站,并用于构建新模型。乐天堂•体育(FUN88)官方app下载

  下图是通过p-diff、使用3个随机种子从头开始训练的ResNet-18模型的参数分布,展示了不同层之间以及同一层不同参数之间的分布模式。

  为了评估p-diff所生成参数的质量,研究人员利用3种类型、每种两个规模的神经网络,在8个数据集上对其进行了测试。

  下表中,每组的三个数字依次表示原始模型、集成模型和用p-diff生成的模型的测评成绩。

  结果可以看到,用p-diff生成的模型表现基本都接近甚至超过了人工训练的原始模型。

  效率上,在不损失准确度的情况下,p-diff生成ResNet-18网络的速度是传统训练的15倍,生成Vit-Base的速度更是达到了44倍。

  从下图(a)可以看到,p-diff生成的模型之间的相似度低于各原始模型之间的相似度,以及p-diff与原始模型的相似度。

  而从(b)和(c)中可知,乐天堂•体育(FUN88)官方app下载与微调、噪声添加方式相比,p-diff的相似度同样更低。

  这些结果说明,p-diff是真正生成了新的模型,而非仅仅记忆训练样本,同时也表明其具有良好的泛化能力,能够生成与训练数据不同的新模型。

  本文为澎湃号作者或机构在澎湃新闻上传并发布,仅代表该作者或机构观点,不代表澎湃新闻的观点或立场,澎湃新闻仅提供信息发布平台。申请澎湃号请用电脑访问。

联系地址:广东省广州市天河区88号

联系电话:400-123-4567

E-mail:admin@ahzyxzb.com

服务热线:13800000000

扫一扫,关注乐天堂fun88

Copyright © 2012-2024 乐天堂fun88(中国)APP下载 版权所有

津ICP备16006615号-2
网站地图